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Abstract
In this letter, we develop a mode-coupling theory for a class of nonlinear
Langevin equations with multiplicative noise using a field-theoretic formalism.
These equations are simplified models of realistic colloidal suspensions. We
prove that the derived equations are consistent with the fluctuation–dissipation
theorem. We also discuss the generalization of the result given here to
real fluids, and the possible description of supercooled fluids in the ageing
regime. We demonstrate that the standard idealized mode-coupling theory is
not consistent with the FDT in a strict field-theoretic sense.

PACS numbers: 05.20.Jj, 64.70.Pf, 05.70.Ln

1. Introduction

Mode-coupling theory (MCT) has been a useful first-principles approach for studying the
dynamics of supercooled liquids (see, for example, [1]). MCT was originally derived using
projection operator methods together with several uncontrolled approximations. The theory
has been successful in providing a quantitative account of many experimental and numerical
observations, such as nonergodic parameters and structural relaxation exponents [2]. The
approximate nature of the conventional MCT, however, has restricted its validity to description
of only: (i) two-point correlation functions1, (ii) for systems at equilibrium and (iii) at relatively
high temperatures below which the theory predicts a spurious glass transition.

1 See, however, Biroli and Bouchaud [3]. Note that, strictly speaking, the mode-coupling approach taken here is of
the field-theoretic, diagrammatic variety. This is what allows the authors to compute multi-point correlation functions,
something that is difficult to do in a useful manner from the projection operator approach. The field theory used in
the work of Biroli and Bouchaud is that of Das and Mazenko [4] which assumes the FDT from the start. The work
presented here is a first step beyond such a simplified treatment.
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Experimental and numerical studies, on the other hand, have provided us with a rich
dynamics, none of which conventional MCT can explain. For example, simulations and
experiments of supercooled fluids have revealed the existence of the correlated local dynamical
heterogeneities (see, for example, [5]), and dynamical scaling [6]. Another example is
supercooled liquids brought out of equilibrium by quenching the system to low temperature
or by adding shear flow. Here many experiments and simulations have shown violation of the
fluctuation–dissipation theorem (FDT) and the existence of the effective temperatures [7–9].
A microscopic theory which goes beyond MCT is desirable to account these phenomena.
For such purposes, a systematic field-theoretic approach is a good candidate. Such a field
theoretical perturbation scheme for dynamical processes has been developed by Martin, Siggia
and Rose (MSR) [10]. This approach is advantageous over the projection operator technique in
that: (i) it is conceptually straightforward to extend MCT-type equation to incorporate higher
order moments of fluctuations, (ii) it is useful for calculating multipoint correlation functions
which are essential observables to monitor the dynamical heterogeneities in the supercooled
fluids and (iii) it enables one to treat the correlation function and the response function (which
are related by the FDT if equilibrium holds) on an equal footing and, therefore, it is a powerful
tool for the treatment of nonequilibrium systems.

Conventional MCT used for glassy or disordered systems is believed to be equivalent
with renormalized perturbation theory [11] without vertex corrections within the standard
loop expansion of the MSR formalism [10]. This is true for a certain class of disordered
systems such as the p-spin spin glass models [12]. For supercooled fluids, however, this field
theory has never been systematically used to derive the MCT equation even at equilibrium.
The primary obstacle is that, although the original equations of motion satisfy the FDT at
equilibrium, this does not imply that an arbitrary perturbation scheme also preserves the
constraints of the FDT at each order of the expansion. Derivations of MCT for supercooled
fluids from the field-theoretic point of view have been discussed by several authors [4, 13, 14]
but either the FDT has been assumed (rather than consistently derived) [4, 14] or a certain
model has to be introduced for the derived equation to guarantee the FDT [13]. Difficulties in
deriving the MCT equations and extending them to higher order by a systematic loop expansion
for supercooled fluids are due to certain properties of the nonlinearities in the microscopic
Langevin equation. These difficulties do not exist in the schematic p-spin models. To illustrate
the difficulties, let us consider a Langevin equation which describes dynamics of the density
field, ρ(r, t), of the dense colloidal suspension, as an example [15];

∂ρ(r, t)
∂t

= D∇ ·
{
∇ρ(r, t) − ρ(r, t)∇

∫
dr′c(r − r′)δρ(r′, t)

}
+ fρ(r, t), (1)

where D is the diffusion coefficient which is assumed to be a constant, δρ(r, t) = ρ(r, t)− ρ0

with ρ0 = 〈ρ(r, t)〉 is a density fluctuation, fρ(r, t) is a random noise and c(r) is the direct
correlation function. The second term in the brackets accounts for the interaction between
the particles and is the source of the nonlinearity of the Langevin equation2. Equation (1)
is known to exhibit the glassy properties at high densities. It has also been shown that, in
equilibrium, this equation can be reduced to a standard MCT equation in the overdamped limit,
using projection operators [18–20]. In order to see the difficulty in applying the field-theoretic
MSR, let us rewrite equation (1) in a following form:

∂ρ(r, t)
∂t

=
∫

dr′Lρ(r)ρ(r′)
δS

δρ(r′)
+ fρ(r, t), (2)

2 Equation (1) is already coarse-grained in a sense that the bare interaction potential is replaced with the effective
potential −c(r)/kBT . See [16, 17].
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where

Lρ(r)ρ(r′) = kB
−1D∇ · ∇′ρ(r, t)δ(r − r′) (3)

is the Onsager coefficient and S is the entropy of the whole system which is given as a
functional of the density by

S = kB

{
−

∫
dr ρ(r)[ln{ρ(r)/ρ0} − 1] +

1

2

∫
dr

∫
dr′c(|r − r′|)δρ(r)δρ(r′)

}
. (4)

The random field fρ(r, t) satisfies

〈fρ(r, t)fρ(r′, t ′)〉 = 2kBLρ(r)ρ(r′)δ(t − t ′). (5)

One sees that there are two types of nonlinearities entangled in equation (2). One is due to the
thermodynamic force δS/δρ(r), which is nonlinear in δρ. Another is the density-dependent
Onsager coefficient which, through equation (5), makes the random force a nonlinear function
of the density, producing multiplicative noise. These properties are quite general for Langevin
equations for realistic fluids. As elucidated in the next section, these two nonlinearities are
the origin of difficulties which hamper the field theoretical approach for realistic fluids.

In this letter, we develop the tools to treat some of the difficult nonlinearities discussed
above, including multiplicative noise. Our goal is to derive MCT-type equations which satisfy
the FDT at the lowest level of the loop expansion if the system is at equilibrium. This goal
is an important prerequisite condition when we set out to explore nonequilibrium systems.
Our theory will serve as a first step, however incremental, to prepare for the development
of a field theory for supercooled fluids which goes beyond the conventional MCT and is
capable of exploring, for example, nonequilibrium systems, the effect of higher order loops
and multipoint correlation functions. In particular, we will show that:

(a) Care must be exercised in field theoretical derivations of the response of a system described
by equation (1) to an external field since the response function is not trivially connected
to the propagator in general. This fact has been ignored in past works [21].

(b) The multiplicative noise term is essential for a proper treatment of the memory term. This
point has been overlooked in past works [14], as the proper field theoretic treatment of
this term is subtle.

(c) A standard one-loop treatment can lead to the usual MCT of Götze and coworkers [1, 2]
at the expense of satisfying the FDT. This will lead us to consider a slightly simpler model
for which the associated self-consistent one-loop theory presents the FDT. This model
will allow us to make connection with the work of Schmitz et al [13].

In the next section, we give more detailed accounts of the background and motivation of the
present work. Section 3 is devoted to derivation of MCT for multiplicative noise using the
MSR method. Consistency with the FDT is discussed in sections 4 and 5. Perspectives for
developing MCT for the nonequilibrium case are discussed in section 6.

2. Background

In order to make the argument general, let us consider a classical stochastic dynamical process
of a field variable xi(t), where i is an index that denotes the type of field (such as the density)
and coordinates (such as positions or wave vectors) which may be either discrete or continuous.
If the system is macroscopically at equilibrium, xi(t) obeys a nonlinear Langevin equation of
a general form:

ẋi = Miα

∂S

∂xα

+ Liα

∂S

∂xα

+ fi ≡ Kiα

∂S

∂xα

+ fi, (6)
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where a sum over the repeated Greek indices is assumed. S is the entropy of the entire system.
Kij ≡ Mij + Lij is a kinetic coefficient which generally depends on x. Miα∂S/∂xα represents
the reversible term where Mij = −Mji is an antisymmetric matrix. Liα∂S/∂xα represents
the irreversible term, where Lij is the (x-dependent) Onsager coefficient. fi(x, t) is a random
noise which satisfies

〈fi(x, t)fj (x′, t ′)〉x(t)=x = 2kBLij (x)δ(t − t ′), (7)

where 〈· · ·〉x(t)=x denotes the conditional average in which the ensemble average is taken with a
fixed value of x(t) = x at time t. The fact that the Onsager coefficient is a function of x means
that the random noise is also the function of x, i.e., it is multiplicative [22]. Equation (6)
is the general expression for dynamical systems whose stationary distribution function in
the absence of nonequilibrium constraints is given by the equilibrium ensemble. Examples
include the (fluctuating) Navier–Stokes equation [23, 24] and the nonlinear diffusion equation
(equation (1)). The response function χij (t) is defined as the response to a time-dependent
external force F(t) by

〈�xi(t)〉F =
∫ t

−∞
dt ′χiα(t − t ′)Fα(t ′), (8)

where 〈�xi(t)〉F is the deviation of 〈xi(t)〉 from its equilibrium value due to the external
force. The FDT asserts that χij (t) is related to the correlation function in the absence of
F(t), Cij (t) = 〈xi(t)xj (0)〉, by

χij (t) = − 1

kBT

dCij (t)

dt
for t � 0. (9)

The FDT is proved easily using linear response theory [25]. The FDT is one of the strongest
and the most robust statements of equilibrium statistical physics and it holds for any dynamical
processes, classical or quantum, linear or nonlinear, as long as the system is stationary, satisfies
the condition of detailed balance, and the perturbation is small enough.

The MSR formalism allows us for the use of a systematic loop expansion for the solution
of the nonlinear Langevin equation in terms of the moments. MCT is regarded as the lowest
order self-consistent approximation with no vertex correction in the MSR formalism. Deker
et al [21] have proven that the FDT holds at each order of the loop expansion for three
special classes of dynamical processes: ‘class A’ where, in equation (6), Mij (x) = 0, Lij is a
constant (independent of x) and thus the noise is additive. The nonlinearity of the Langevin
equation originates from the entropy S. ‘Class B’ where Lij is constant and the entropy is a
quadratic function of x. The reversible matrix Mij (x) depends on x which is the origin of the
nonlinearity. The equations discussed by Kawasaki to describe dynamical critical phenomena
[26] belong to this class. ‘Class C’ involves Hamiltonian systems which do not have an
irreversible part.

The problems is that, as discussed in the introduction, even equation (1), which describes
the dynamics of supercooled fluids, does not belong to any of the classes listed above. The
nonlinear term in equation (1) originates from the combination of the non-quadratic term
of the entropy and the variable dependence of the Onsager coefficient. Extensions of the
MSR formalism to more general cases have been discussed in [14, 27–29] but derivations of
MCT equations have not been given so far. Since Deker’s classifications do not cover these
dynamical processes, it is convenient to re-categorize the nonlinear stochastic processes in a
slightly more general way than classes A–C of Deker:

Class I. The nonlinearity comes solely from the entropy. Kij is independent of x. The noise
is additive. The mean-field model of p-spin spin glasses also belongs to this type [12]. Again,
it is trivial to show that the FDT holds at each order of the loop expansion.
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Class II. The entropy is a quadratic function of x but Kij (x) is dependent on x. Lij (x) can also
be a function of x and, therefore, the noise can be multiplicative.

Class III. The entropy is an arbitrary function of x and Kij (x) is dependent on x. Real fluids
including the one described by equation (1) belong to this type.

In this letter, we shall focus here on class II. Here we restrict ourselves to the simplest situation
where Kij (x) is a linear function of δx:

Kij (x) = K
(0)
ij + K

(1)
ij,αδxα, (10)

because this is the most important case in the context of the glass transition. We shall show, for
this class of Langevin equations, that MCT is consistent with the FDT even with the presence
of multiplicative noise. We believe that this conclusion is valid for arbitrary function of Kij (x)

of class II. We will end this work with some comments on the more interesting class III case
which is problematic from the standpoint of the FDT within the MCT approximation.

3. MSR formalism for processes with multiplicative noise

In this section, we shall develop the MSR method for the class II case. In class II, the entropy
in equation (6) is given by a quadratic form

S = S0 + 1
2�αβδxαδxβ, (11)

where δx = x − 〈x〉 and �−1
ij = −kBC−1

ij (t = 0) is the inverse of the equal time correlation
function. Such an approximation is, perhaps, not as crude as it may superficially appear.
Indeed, it has been shown via direct simulation that both simple [30] and complex liquids [31]
have Gaussian density fluctuations over a wide range of length scales. Equation (11), within
the canonical ensemble, is a precise statement of this approximation. The Fokker–Planck
equation for the probability density function P(x, t) equivalent with equation (6) is written as

∂P (x, t)

∂t
= − ∂

∂xα

{
Kαβ(x)

∂S

∂xβ

− kBLαβ(x)
∂

∂xβ

}
P(x, t) ≡ T P(x, t). (12)

For the detailed balance condition to be satisfied, Mij (x) must satisfy the following condition
(potential condition [25]): ∂Miα(x)/∂xα = 0. We shall also assume the similar incompressible
condition for Lij (x): ∂Liα(x)/∂xα = 0. These two conditions are satisfied for most
hydrodynamic equations including equation (1) (see equation (3)). The latter condition is
especially useful because it enables us to avoid distinguishing between the Ito and Stratonovich
interpretations which are associated with the multiplicative noise [22]. Using equations (10)
and (11), equation (6) can be rewritten as

ẋi = µiαxα + 1
2Viαβxαxβ + fi. (13)

Hereafter we shall omit the ‘δ’ in front of x. In equation (13), µij = K
(0)
iα �αj is a bare transport

coefficient and Vijk = Vikj is the symmetrized vertex defined by

Vijk = M
(1)
iα,j�αk + M

(1)
iα,k�αj + L

(1)
iα,j�αk + L

(1)
iα,k�αj ≡ Mijk + Lijk, (14)

where Mijk and Lijk are reversible and irreversible contributions of Vijk , respectively. Mijk

satisfies the cyclic condition given by

�iαMαjk + �jαMαki + �kαMαij = 0. (15)

This is proved by using the condition that the reversible part does not contribute to the entropy
production.
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Following the standard MSR procedure [10], we shall introduce a spinor z ≡ (x, x̂),
where x̂i ≡ −∂/∂xi . It is convenient to define the generating function for z by

W [ξ] ≡ ln

〈
exp+

[∫
dt ξ · z

]〉
, (16)

where ξ = (η, η̂) is the auxiliary field conjugate to z which will be eventually set to zero.
‘exp+’ implies the time ordering which aligns the quantities with larger t on the left. We define
the cumulant function Gξ (1, . . . , n) = 〈〈z(1) · · · z(n)〉〉 by

Gξ (1, . . . , n) = δnW [ξ]

δξ(1) · · · δξ(n)
. (17)

The index number 1 = (i, t,±), etc represents the index for field variables i, time t, and the
index of the spinor defined by z(+) = x and z(−) = x̂, respectively. Let us construct the
equation of motion for the first cumulant, 〈〈z(1)〉〉. Substituting equation (13) into equation (17)
for n = 1, we obtain the Schwinger equation:

d〈〈z(1)〉〉
dt

= −〈〈[T , z(1)]〉〉 + iσ(1, 1)ξ(1), (18)

where a sum over the repeated underlined indices is assumed. [· · ·] is the commutator, T is
the Fokker–Planck operator defined by equation (12) represented in terms of (x, x̂), and

iσ(1, 2) =
(

0 −1
1 0

)
δ(t1 − t2). (19)

The explicit expression of equation (18) is given by
d〈〈xi〉〉

dt
= η̂i + µiα〈〈xα〉〉 +

1

2
Viαβ{〈〈xαxβ〉〉 + 〈〈xα〉〉〈〈xβ〉〉}

+ 2kB
[
L

(0)
iα 〈〈x̂α〉〉 + L

(1)
iα,β{〈〈x̂αxβ〉〉 + 〈〈x̂α〉〉〈〈xβ〉〉}]

(20)
d〈〈x̂i〉〉

dt
= −ηi − tµiα〈〈x̂α〉〉 − Vαβi{〈〈x̂αxβ〉〉 + 〈〈x̂α〉〉〈〈xβ〉〉} + Vααi

− kBL
(1)
αβ,i{〈〈x̂αx̂β〉〉 + 〈〈x̂α〉〉〈〈x̂β〉〉},

where tµij is the transverse of µij . The last terms in these equations are due to the multiplicative
noise. Equation (20) is written in short as

G−1
0 (1, 1)〈〈z(1)〉〉 = ξ(1) + C(1) + 1

2γ3(1, 1, 2){〈〈z(1)z(2)〉〉 + 〈〈z(1)〉〉〈〈z(2)〉〉}, (21)

where C(1) ≡ (Vααi, 0) is a constant which does not contribute to the following arguments
and G0(1, 2) is the bare propagator whose inverse is written as

G−1
0 (1, 2) = iσ(1, 2)

d

dt2
+ γ2(1, 2) (22)

with the symmetric matrix γ2(1, 2) defined by

γ2(1, 2) =
(

0 −tµ

−µ −2kBL(0)

)
δ(t1 − t2). (23)

The non-zero components of γ3(1, 2, 3) are{
γ3(i1, t1,−; i2, t2, +; i3, t3, +) = Vi1i2i3δ(t1 − t2)δ(t1 − t3)

γ3(i1, t1,−; i2, t2,−; i3, t3, +) = 2kBL
(1)
i1i2,i3

δ(t1 − t2)δ(t1 − t3)
(24)

and its permutation of the indices (1, 2, 3). Note that γ3(1, 2, 3) is a fully symmetric tensor.
The second moment G(1, 2) = Gξ=0(1, 2) = 〈z(1)z(2)〉 is given by taking the derivative of
equation (21) with respect to 〈〈z(2)〉〉 using equation (17) and then turning off ξ = 0:

G−1(1, 2) = G−1
0 (1, 2) − (1, 2), (25)
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where (1, 2) is the self-energy. By neglecting the vertex correction, we obtain the MCT
expression for the self-energy:

(1, 2) � 1
2γ3(1, 1, 2)G(1, 3)G(2, 4)γ3(2, 3, 4). (26)

We can write the components of these matrices as

G(1, 2) ≡
(

C G
G† 0

)
and (1, 2) ≡

(
0 E†

E D

)
, (27)

where ‘†’ represents the Hermitian conjugate defined by A
†
ij (t − t ′) = A∗

ji(t
′ − t). From

the structure of equation (25), it is straightforward to show that G(−,−) = (+, +) = 0.
Cij (t − t ′) = 〈xi(t)xj (t

′)〉 is the correlation function and Gij (t − t ′) = 〈xi(t)x̂j (t
′)〉 is the

propagator which describes the response of the system to the random noise. For t > 0, the
equations for C(t) and G(t) can be written explicitly using equations (22)–(25) as

dCij (t)

dt
= µiαCαj (t) +

∫ t

−∞
dt1Eiα(t − t1)Cαj (t1) +

∫ 0

−∞
dt1Diα(t − t1)G

†
αj (t1) (28)

dGij (t)

dt
= µiαGαj (t) +

∫ t

0
dt1Eiα(t − t1)Gαj (t1) (29)

with the self-energies given by{
Eij (t) = ViαβGαλ(t)Cβµ(t)Vλµj + kBViαβGαλ(t)Gβµ(t)L

(1)
λµ,j

Dij (t) = 1
2ViαβCαλ(t)Cβµ(t)Vjλµ + 2kBViαβGαλ(t)Cβµ(t)L

(1)
jλ,µ,

(30)

where use has been made of the causality condition: G(t) = 0 for t < 0. The
terms containing L

(1)
ij,k in equation (30) originate from the multiplicative noise. Similar

terms were derived by Kawasaki et al [14] but they were disregarded and their
importance was not addressed. Note that the propagator G(t) represents the response to
the noise but it is not the response to the external force defined by equation (8). The response
function is obtained by evaluating the linear response of the average 〈xi(t)〉 to the external
force F(t). The term associated with the external force is introduced naturally by replacing
the entropy with the one associated with the work done by the force as

SF = S +
x · F
T

. (31)

Inserting this expression into the entropy term in equation (12) and taking the leading order
of the formal solution, it is straightforward to derive the expression for the response function.
The result is

χij (t − t ′) = 1

T
〈xi(t)x̂α(t ′)Kαj (x(t ′))〉

= 1

T
〈xi(t)x̂α(t ′)〉K(0)

αj +
1

T
〈xi(t)x̂α(t ′)xβ(t ′)〉K(1)

αj,β .

(32)

The three-point correlation function 〈xi(t)x̂α(t ′)xβ(t ′)〉 in this expression is calculated in the
same spirit as derivation of equation (26). Up to the one-loop level, neglecting the vertex
correction, it is written as 〈z(1)z(2)z(3)〉 � G(1, 1)G(2, 2)G(3, 3)γ3(1, 2, 3). Substituting
equation (24) into this, one obtains the MCT expression of the response function:

χij (t) = 1

T
Giα(t)K

(0)
αj +

1

T

∫ t

0
dt1Giα(t − t1)Vαβγ Gβλ(t1)Cγµ(t1)K

(1)
λj,µ. (33)

In previous works, the propagator T −1G(t) · K(0) has been called the response function [21].
But as discussed above, it is not identical to the full response function in general. They become
identical only if the kinetic coefficient Kij is a constant, i.e., for class I.
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4. FDT and MCT for class II

In this section, we prove that the correlation and response functions given by equations (28),
(29) and (33) satisfy the FDT, equation (9). Deker et al have shown that, for the MCT equation
of class B, there is a simple relation between the correlation function and the propagator if Lij

is a constant or L
(1)
ij,k = 0 [21]:

G(t) = θ(t)C(t) · C−1(0), (34)

where θ(t) is the Heaviside function. We prove that this is also true when L
(1)
ij,k 	= 0 or the

noise is multiplicative as follows: taking the time derivative of both sides of equation (34) and
substituting the equation for the correlation function, equation (28), we have

dG
dt

= 1 + µ · G + θ(t){E ⊗ C + D ⊗ G†} · C−1(0), (35)

where A ⊗ B ≡ ∫ ∞
−∞ dt1Aiα(t − t1)Bαj (t1). The terms containing Mijk in E ⊗ C · C−1(0)

can be rearranged using equation (34) and the cyclic condition, equation (15). For example,
if t1 � 0,

ViαβGαλ(τ )Cβµ(τ)MλµνCνj (t1) = − 1
2ViαβCαλ(τ )Cβµ(τ)MνλµG

†
νj (t1), (36)

where τ = t − t1. Here we have used the fact that Cij (0) = −kB�−1
ij . On the other hand, the

terms containing Lijk in E ⊗ C · C−1(0) are rearranged as{
Gαλ(τ)Cβµ(τ)Lλµk + kBGαλ(τ)Gβµ(τ)L

(1)
λµ,k

}
Ckj (t1)

=
{
−2kBGαλ(τ)Cβµ(τ)L

(1)
kλ,µ − 1

2
Cαλ(τ )Cβµ(τ)Lkλµ

}
G

†
kj (t1). (37)

Equation (36) combined with equation (37) cancels with D ⊗ G† · C−1(0) of equation (35).
Likewise, for t1 � 0, E ⊗ C · C−1(0) can be rewritten as E ⊗ G†. Therefore, equation (35)
becomes equivalent to the equation for G, equation (29). This is the end of the proof.

Now let us prove the FDT. By taking the derivative of equation (34) with respect to time
and using equation for G(t), equation (29), we have

dC(t)

dt
= −kBG(t) · K(0) +

∫ t

0
dt1G(t − t1) · E(t1) · C(0). (38)

In this expression, E(t) · C(0) can be rewritten using equation (34) and antisymmetric property
of M

(1)
ij,k as

{E(t) · C(0)}ij = −kBViαβGαλ(t)Cβµ(t)K
(1)
λj,µ. (39)

Therefore, the right-hand side of equation (38) becomes identical to −kBT χij (t) given by
equation (33). Thus we arrive at equation (9) and the FDT is proved.

Finally let us derive the closed equation for Cij (t). D ⊗ G† again cancels with E ⊗ C for
t1 � 0. For t1 � 0, Eij (t) is rewritten as

Eij (t) = − 1
2ViαβCαλ(t)Cβµ(t)(V − 2L)νλµC−1

νj (0) (40)

and we arrive at the MCT equation for Cij (t);

dCij (t)

dt
= µiαCαj (t) +

∫ t

0
dt1Eiα(t − t1)Cαj (t1). (41)

It is important to realize that −2L in the vertex in equation (40) is due to the multiplicative noise
and the presence of it is essential. For example, for the pure dissipative case (Mij (x) = 0),
neglect of the multiplicative noise leads to the wrong sign in front of the integral term (and
thus leads to pathological behaviour). This term is neglected in [14].
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5. FDT and MCT for class III

In this section, we shall consider the category of problems we call class III and elucidate
generic reason why the MCT approximation for the class III dynamics is inconsistent with
the FDT. For complete discussion of the technical aspects involved it would require a longer
discussion than we provide here. Our main point is simply to sketch the difficulties that arise
in attempting to formulate a simple MCT (namely a self-consistent one-loop theory for both
the propagation and the response function) that satisfies the FDT. The important conclusion
is that the standard idealized MCT of Götze and coworkers [1, 2] cannot be consistently
derived via field-theoretic techniques, at least via the usual one-loop approximations applied to
equation (1). This is discussed both in this section and in section 6.

For problems of class III, the entropy is not a quadratic function but has higher order
terms;

S = S0 +
1

2
�αβδxαδxβ +

1

3!
�αβγ δxαδxβδxγ + · · · . (42)

We again assume that the kinetic coefficient Kij (x) is a linear function of x. Up to the quadratic
order in x, the nonlinear Langevin equation for x is given by equation (13) but the vertex,
equation (14), is now modified as

Vijk = K
(0)
iα �αjk + M

(1)
iα,j�αk + M

(1)
iα,k�αj + L

(1)
iα,j�αk + L

(1)
iα,k�αj ≡ V(I )

ijk + V(II)
ijk , (43)

where V(I )
ijk ≡ K

(0)
iα �αjk is the vertex that originates from the nonlinearity of the entropy

whereas V(II)
ijk , which is the same as equation (14), originates from the x-dependence of the

kinetic coefficient Kij (x). The one-loop equations for Cij (t) and Gij (t), equations (28) and
(29), remain the same except that the vertex is given by equation (43) instead of equation (14).
First, we shall show that there is no simple relation such as equation (34) which relates the
correlation function to the propagator. The starting point is the formal solution of equation (28)
for the correlation function;

C = G ⊗ (kBK(0) + kBK(0)† + D) ⊗ G†. (44)

This is derived by eliminating E(t) from the formal solution of C(t) by substituting the
formal solution for G(t). Substituting the equation for G, equation (29), equation (44) can be
rewritten as

C = −kBG ·Ω−1 + G ⊗ f ⊗ G† (45)

for t � 0. In this expression, f(t) ≡ −kBE(t) ·Ω−1 − kBΩ−1 · E(t) + D(t). Following the
similar steps as equations (37)–(39), f(t) can be reduced as

fij (t) = −ViαβGαλ(t)Cβµ(t)V(I )
λµν�

−1
νj + 1

2ViαβCαλ(t)Cβµ(t)V(I )
jλµ + (higher order loops),

(46)

where only the first two terms (one loop) are explicitly shown. The other terms consist of
the higher order loops. These loops appear to contain at least one multiple of V(I )V(II). This
means that these higher order loops do not appear in either class I or class II problems. If
one takes the time derivative of equation (45), one obtains, after straightforward but tedious
calculations, the following expression:

dC(t)

dt
= −kBT χ(t) + (higher order loops). (47)
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Again, the higher order loops always contain at least one multiple of V(I )V(II). One of the
lowest order terms is an integral such as∫

dt ′ ViαβGαλ(t − t ′)Cβµ(t − t ′)V(I )
lλµV

(II)
lα′β ′G

†
α′λ′(t

′)Cβ ′µ′(t ′)Vjλ′µ′ . (48)

Note that this term is an irreducible loop in the field-theoretic language, which means that
this cannot be represented by any simpler renormalized diagram. Since the original Langevin
equation (13) itself does satisfy the FDT, the failure of the FDT in equation (47) is attributed to
the inconsistencies of the loop expansion with the FDT. In other words, a naive loop expansion
using the bare fields z = (x, x̂) for class III problems does not preserve the FDT at the each
level of expansion. The higher order diagrams shown in equation (47) are cancelled only by
taking the next higher order loops in the MSR loop expansion in section 3.

The failure to derive the FDT at the one-loop level for class III leads to the failure of
deriving a MCT-type equation such as equation (41). By substituting equations (45) and (47)
into the equation for Cij (t), equation (28), we obtain

dCij (t)

dt
= µiαCαj (t) +

∫ t

0
dt1Eiα(t − t1)Cαj (t1) + (higher order loops), (49)

where Eij (t) is given by the same expression as equation (40) except that V is given by
equation (43) and L in the second vertex, (V − 2L) in equation (40) is replaced by

L
(0)
iα �αjk + L

(1)
iα,j�αk + L

(1)
iα,k�αj . (50)

The higher order loops in equation (49) are again irreducible diagrams which do not appear
if either V(I ) or V(II) is absent. Equation (49) shows that the standard MCT equation for the
class III is regarded as the uncontrollable approximation in the field-theoretic sense in that it
neglects terms which are present in the original set of equations, equations (28) and (29). The
consequences of this are discussed below.

6. Discussion

In order to see how the results shown in the previous sections are related to real fluids, let us
consider the Langevin equation for a colloidal suspension given by equation (1). The class II
equation is derived by approximating the entropy given by equation (4) with its Gaussian form.
Neglecting the terms of higher order than quadratic, one has

S � S0 − kB

2

∫
dk

|δρk|2
NS(k)

, (51)

is the Fourier transform of δρ(r), N is the total number of the particles and S(k) = N−1〈|δρk|2〉
is the static structure factor. As mentioned in section 3, this approximation has been shown
to hold over a wide range of length scales in real liquids [30, 31]. It is also compatible with
the functionals used to derive integral equations of fluid structure [32]. It is not expected
to hold on very short length scales where density fluctuations are Poissonian and the ideal
gas entropy is essential. On the other hand, density fluctuations on such length scales are
not expected physically to be effective in providing glassy behaviour. It is plausible that
the approximation equation (51) may be used (along with an appropriate large wavevector
cutoff) in the treatment of realistic fluids. Indeed, approximation (51) is used in [13]. Using
equations (3) and (51), the MCT equation, equation (41), for the density correlation function
F(k, t) = N−1〈δρk(t)δρ−k(0)〉 is written as

∂F (k, t)

∂t
= − Dk2

S(k)
F (k, t) +

∫ t

0
dt1M

′(k, t − t1)F (k, t1) (52)
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with the memory kernel given by

M ′(k, t) = D2k2

2ρ0S(k)

∫
dq

(2π)3

{
k̂ · q
S(q)

+
k̂ · p
S(p)

}2

F(q, t)F (p, t), (53)

where p = k−q. Note that the vertex k̂ · q/S(q) + k̂ · p/S(p) is precisely the one that appears
in [13], where the Gaussian approximation to the entropy is also made. This equation should
be compared with the standard MCT equation which has been derived using the projection
operator method with the decoupling approximation [18] where3

M(k, t) = ρ0D
2k2

2

∫
dq

(2π)3
{k̂ · qc(q) + k̂ · pc(p)}2F(q, t)F (p, t). (54)

We observe that there is a difference between equations (53) and (54): 1/S(q) appears in the
vertex function of equation (53), whereas the direct correlation function ρ0c(q) = 1 − 1/S(q)

shows up in equation (54). This difference traces back to the Gaussian approximation,
equation (51) [34]. The entropy of fluids is not Gaussian due primarily to ideal gas part,
ρ ln ρ, in equation (4). As discussed in the introduction, the nonlinearities of realistic fluids
come both from the entropy (in this case, ρ ln ρ) and the kinetic coefficient and therefore
realistic fluids are destined to belong to class III over the entire range of wavevectors. Indeed,
if the full expression for S, equation (4), instead of approximated form of equation (51) is
used, one sees that the non-quadratic term of S gives a vertex of the form of −D(k̂ · q + k̂ · p)

which, combined with D{k̂ · q/S(q) + k̂ · p/S(p)}, leads to ρ0D{k̂ · qc(q)+ k̂ · pc(p)}. Using
the full expression for S means that the dynamics now belongs to class III. As illustrated in
section 5, one obtains the memory kernel in the form of equation (54) but there are always
extra terms which are a direct consequence of inconsistencies of the FDT with the one-loop
approximation in the MSR formalism, at least if the loop expansion is made directly with
physical density modes as field variables4. This argument is true for arbitrary orders of
the loop expansion. This conclusion implies that there is no simple systematic way to derive
equation (54) from equation (1) using the standard field-theoretic method. This inconsistency is
not relevant as far as one is concerned only with the equilibrium state, because one may always
adopt an approximation where one neglects higher order terms in equation (49) and ‘define’
the response function via the FDT instead of solving the equation for G(t), equation (29),
separately. But we cannot do so if the system is in nonequilibrium state. It is desirable
to develop such an expansion method that preserves the FDT relation at each level of the
perturbative expansion.

Even with the difficulties discussed in this letter, the MSR or field-theoretic approach is
still an attractive route to attack out-of-equilibrium supercooled fluids, in that it is systematic
and one does not need to evaluate the nonequilibrium measure which is required in alternative
approaches such as the projection operator technique. Models which belong to class I have
been already discussed extensively in the context of spin glasses and even for supercooled
fluids [35]. However, it is difficult to construct realistic models of class I which can incorporate

3 Note that equation (52) is different from the MCT equation used in the supercooled fluids; −Dk2F(k, t1) appears
in the place of ∂F (k, t1)/∂t1 [18, 20, 33]. The difference originates from the overdamped nature of the starting
diffusion equation, equation (1). One obtains the ∂F (k, t1)/∂t1 term if one incorporates the momentum density as
well as the number density as stochastic variables. Technically, this is equivalent to using the irreducible projection
operator introduced by Cichocki et al [18].
4 Recent unpublished work by G Biroli, A Lefevre and J-P Bouchaud shows that if a transformed set of modes is
used, FDT can be recovered for the full class III problem, although, at the time of submission of this work, other
mathematical difficulties arise that render the resulting equations unusable in the present form. In particular, the
vertex that results is distinct from that of equation (54), and thus the one-loop approximation does not yield the usual
form of the standard idealized MCT of Götze and coworkers.
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the effect of changes of structure embodied in S(k) observed in simulations of aging [7] and
sheared systems [36, 37], which is argued to be essential for the violation of the FDT of
real fluids [38]. The class II system derived here is a better candidate as a realistic ‘model
fluid’. As discussed above, the Gaussian approximation for the entropy is known to be a
good description for wide ranges of densities and length scales [30, 31]. The equation for
equal-time correlation functions such as S(k) should be constructed in the same manner as the
MCT equation derived here. The solution could be plugged into the vertex functions of the
set of the MCT equations, equations (28) and (29). Eventually, these three equations can be
solved self-consistently. Performing such a calculation will require some consideration of a
wavevector cutoff that would eliminate spurious divergence that arises from the approximate
vertex functions (equation (53)). Calculations in this direction are underway.

In summary, in the present work, we have broadened the range of applicability of the
MSR approach by extending the method to dynamical processes with the multiplicative noise.
This is a necessary step in the treatment of the Brownian dynamics of colloidal suspensions.
This formalism still does not cover real fluids over all length scales and it is found that there
is no direct compatibility between the MCT equations derived from MSR approach and from
the projection operator method. We proposed an approximate but feasible method to explore
nonequilibrium supercooled fluids using the formalism discussed in this paper. The MSR
method is not restricted to evaluation of the two point correlation functions nor to the lowest
order loop expansion. Extension of the method to the multipoint correlation functions and to
higher order loops will be essential for understanding growing length scales which are hidden
in the supercooled fluids [3]. The formulation presented in this paper will serve as a first step
towards such extensions.
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